skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ezenwa, Innocent_C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The heat extracted from the core by the overlying mantle across the core‐mantle boundary controls the thermal evolution of the core. This in turn leads to the solidification of the inner core in association with the exsolution of light alloying elements into the liquid outer core. Although the temperature (T) at the inner core boundary (ICB) would be adjusted to account for the effects of the light elements, the melting T of Fe places an upper bound at the ICB and it is a vital point in the thermal profile of the core. Here, we determine the melting T of Fe in the multi‐anvil press by characterizing the interface of Fe‐W interaction. Our data place a tighter constraint on the melting curve of Fe between 8 and 21 GPa, that is directly applicable to small planetary bodies and serves as an anchor for melting curve of Fe at higher pressure. 
    more » « less